
N88-16390

A Multiprocessing Architecture for Real-Time

Monitoring

Thomas J. Laffey

James L. Schmidt

Jackson Y. Read

Simon M. Kao

Lockheed Artificial Intelligence Center

2710 Sand Hill Road

Menlo Park, CA 94025

(415)-354-5209

Abstract

This paper describes a multiprocessing architecture environment for performing real-

time monitoring and analysis using knowledge-based problem solving techniques. To han-

dle asynchronous inputs and perform in real time, the system consists of three or more

separate processes which run concurrently on one or more processors and communicate

via a message passing scheme. The Data Management Process gathers, compresses, scales

and sends the incoming telemetry data to other tasks. The Inference Process consists of

a proprietary high performance inference engine that runs at 1000 rules per second using

telemetry data to perform a real-time analysis on the state and health of the Space Tele-

scope. The I/O Process receives telemetry monitors from the Data Management Process

and status messages from the Inference Process, updates its graphical displays in real time,

and acts as the interface to the console operator. The operator sees a hierarchy of displays

which can be traversed using a mouse, and on which the user can display graphs of the

monitors. The multiprocessing architecture has been interfaced to a simulator and is able

to process the incoming telemetry in "real-time" (i.e., several hundred telemetry monitors

per second). In this paper we will also describe why commercial knowledge-based building

tools are not well suited for real-time domains, thus forcing us to develop our own propri-

etary shell. The system has been applied to the real-time monitoring of telemetry data

from the NASA Hubble Space Telescope (HST) and the application will be described in

another paper at this conference.

155



Introduction

As the application of knowledge-based systems evolves from an art to an engineering

discipline, we can expect more challenging applications to be addressed. Some of the most

challenging and interesting environments are found in real-time domains.

A knowledge-based system operating in a real-time situation (e.g., satellite telemetry

monitoring) will typically need to respond to a changing task environment involving an

asynchronous flow of events and dynamically changing requirements with limitations on

time, hardware, and other resources. A flexible software architecture is required to provide

the necessary reasoning on rapidly changing data within strict time requirements while

accommodating temporal reasoning, non-monotonicity, interrupt handling, and methods

for handling noisy input data.

The Problem

Like other existing satellites, the NASA Hubble Space Telescope (HST) has not been de-

signed to to be an autonomous spacecraft. Its engineering telemetry will be monitored

for vehicle health and safety 24 hours a day by three shifts of operators in the ST Opera-

tions Control Center (STOCC) at the NASA/Ooddard Space Flight Center in Greenbelt,

Maryland.

Six operator workstations (four to monitor the major subsystems and two for command

and supervision) will be used to monitor the incoming telemetry data. Each workstation

consists of two color CRTs which display numeric values, updated in real time.

• On one CRT the operator can bring up a page of formatted telemetry data (where

a page consists of about 50 different monitor mnemonics and its associated value)

or a page consisting of a chronological history of events that have occurred (e.g., a

monitor out of limits)

• The other CRT is a slave to any other console and can be used to display what is

being shown at another workstation

For the HST there are 4,690 different telemetry monitors in 11 different formats avail-

able for interpretation. In normal operating mode, each monitor is sampled at least once

every two minutes, with some being sampled many times during that interval. The telem-

etry format may be changed manually by ground operations or autonomously by the HST

under certain situations. The telemetry data is subject to a variety of problems including

loss of signal and noise in the transmission channel.

As in any large system, the job of the console operator is difficult because of the

complexity of the HST and because it is hard to determine the exact state of the satellite

at any time due to the massive amounts of data arriving at such short intervals and the

ever present possibility of non-nominal behavior.

156



Why Commercial Tools are Inadequate for Real-Time

Monitoring

Real-time domains present complex, dynamic problems because of their dependence on

the time factor. A real-time expert system must satisfy demands that do not exist in con-

ventional domains. Current shells are not generally appropriate for real-time applications

for the following reasons:

1. The shells are not fast enough

2. The shells have few or no capabilities for temporal reasoning

3. The shells are difficult to integrate in an e_icient manner with conventional software

4. The shells have few or no facilities for focusing attention on important events

5. The shells offer no integration with a real-time clock

6. The shells have no facilities for handling asynchronous inputs

7. The shells have no way of handling software/hardware interrupts

8. The shells cannot efficiently take inputs from external stimuli other than a human

9. The shells cannot guarantee response times

10. The shells are not built to run continuously

We next describe a monitoring system called L'STAR (for Lockheed Satellite Telem-

etry Analysis in Real Time) being built to aid the HST console operator in performing

the real-time monitoring and analysis of telemetry data from the HST. L'STAR runs on a

DEC VAXStation II/GPX running under VMS and uses data produced by the BASS Tel-

emetry System at the HST Hardware/Software Integration Facility (HSIF) in Sunnyvale,

California.

"3

Solution Method

Three separate processes are used for the real-time analysis of rapidly changing satellite

telemetry data. Each of the processes operates independently and communicates informa-

tion via message passing. (NOTE: We use the terms process and task interchangeably in

this paper.) The different processes are shown in Figure 1:

• INFERENCE PROCESS -- used to analyze the dynamic data by means of forward

or backward chaining rules

• DATA MANAGEMENT PROCESS -- used to gather, scale and compress the in-

coming telemetry data

157



r _q

Data

Management

o Acquisition
o Smoothing
o Compression
o Limit checking

k

I/0 Task

o User interface
o Graphics output

m,=

Inference

Engine

I List of tasksto perform

,._ A_&

Figure 1: Software Architecture

158



• I/O PROCESS -- used to provide an interface (including real-time graphics) to the

operator

Having three independent tasks allows us to distribute the system across different proces-

sors. When all three tasks are operating on one processor, the timesharing facilities of the

operating system take care of scheduling when each is run.

If all the tasks were done in one process, i.e. sequentially, the Inference Process could

not be reasoning with existing data while the Data Management Process was getting new

data, or while the I/O Process was performing screen output. The main purpose of having

separate tasks was to give the Inference Process complete freedom from input/output

worries and let its limiting factor be the processing power of the CPU on which it is

resident.

Mailboxes are used for the message passing between tasks. They are used as fast, one-

way_ in-memory channels for communication of data. Using this mechanism, the Inference

Process is only slowed by having to read or write to the mailbox.

A typical scenario follows: The Inference Process examines its knowledge base and sends

a set of messages to the Data Management Process indicating which telemetry monitors it

needs to perform its analysis. It also sends messages containing other information the Data

Management Process needs to know about each telemetry monitor such as the sampling

rate_ whether it should be smoothed_ the scaling factor, alternate names, and to which

telemetry set it belongs.

Incoming telemetry data streams are captured from the flight hardware and after initial

preprocessing of the raw data by ground computers are fed to the Data Management

Process. After some scaling and data compression, this process sends the data of interest to

the Inference and I/O processes. The Inference Process can ascertain, using its knowledge

base, if the data correspond to nominal vehicle behavior. The I/O Process consists of

a data flow diagram of the flight system software and magnitude vs. time plots of the

telemetry data. The plots, which are strip charts updated in real-time using data from

the Data Management Process, can appear by using mouse clicks when the cursor is over

appropriate parts of the diagram. Should the HST change state or non-nominal behavior

be detected, messages will be sent from the Inference Process to the I/O Process and

subsequently displayed.

The knowledge in this real-time monitoring system is contained within the rules and

frames which make up the knowledge base. The knowledge base, used primarily by the

Inference Process, contains the critical telemetry items to be monitored and rules to infer

the current state and health of the HST. Of the over 4,000 different telemetry monitors, only

a small number (about 10%) are used by the operators to determine spacecraft behavior.

If, however, non-nominal behavior is detected, other telemetry monitors might be used to

diagnose the problem. This would be done by having a rule fire which causes a message to

be sent from the Inference Process to the Data Management Process, indicating which new

set of telemetry monitors it needs to know about. Rules can also send messages changing

the sampling rate of telemetry at which it is already looking.

159



Discussion

As more and more complex vehicles are put into orbit, it becomes essential that sophisti-

cated methods for evaluating the health of and diagnosing problems within these vehicles

be developed. Real-time knowledge-based systems offer promise as an excellent means

of dispersing such information. During development, testing is an important part of the

cycle. In doing such testing, system designers have to be able to monitor and diagnose

the telemetry streams. This kind of expertise should not have to be independently learned

by the vehicle operators after launch, when the developers are out of the picture. Thus,

for a system such as the one described in this paper, having the expertise saved for the

operations aspect is an invaluable step.

160




